sin(A + B) DOES NOT equal sinA + sinB. Instead, you must expand such expressions using the formulae below.
The following are important trigonometric relationships:
sin(A + B) = sinAcosB + cosAsinB
cos(A + B) = cosAcosB - sinAsinB
tan(A + B) = tanA + tanB
1 - tanAtanB
To find sin(A - B), cos(A - B) and tan(A - B), just change the + signs in the above identities to - signs and vice-versa:
sin(A - B) = sinAcosB - cosAsinB
cos(A - B) = cosAcosB + sinAsinB
tan(A - B) = tanA - tanB
1 + tanAtanB
cos(A + B) = cosAcosB - sinAsinB
tan(A + B) = tanA + tanB
1 - tanAtanB
To find sin(A - B), cos(A - B) and tan(A - B), just change the + signs in the above identities to - signs and vice-versa:
sin(A - B) = sinAcosB - cosAsinB
cos(A - B) = cosAcosB + sinAsinB
tan(A - B) = tanA - tanB
1 + tanAtanB
No comments:
Post a Comment